Das Zoologische Forschungsmuseum Alexander Koenig

ist ein Forschungsmuseum der Leibniz Gemeinschaft

A revised phylogeny of Antilopini

AutorInnen: 
Bärmann, E.V., Rössner, G.E., Wörheide, G.
Erscheinungsjahr: 
2013
Vollständiger Titel: 
A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes
Autor/-innen des ZFMK: 
Org. Einordnung: 
Publiziert in: 
Molecular Phylogenetics and Evolution
Publikationstyp: 
Zeitschriftenaufsatz
DOI Name: 
doi:10.1016/j.ympev.2013.02.015
Keywords: 
supermatrix, partitioned analysis, Bayesian inference, maximum likelihood, maximum parsimony, random-outgroup rooting
Bibliographische Angaben: 
Bärmann, E.V., Rössner, G.E., Wörheide, G. (2013): A revised phylogeny of Antilopini (Bovidae, Artiodactyla) using combined mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution 67, 484-493.
Abstract: 

Antilopini (gazelles and their allies) are one of the most diverse but phylogenetically controversial groups of bovids. Here we provide a molecular phylogeny of this poorly understood taxon using combined analyses of mitochondrial (CYTB, COIII, 12S, 16S) and nuclear (KCAS, SPTBN1, PRKCI, MC1R, THYR) genes. We explore the influence of data partitioning and different analytical methods, including Bayesian inference, maximum likelihood and maximum parsimony, on the inferred relationships within Antilopini. We achieve increased resolution and support compared to previous analyses especially in the two most problematic parts of their tree. First, taxa commonly referred to as ‘‘gazelles’’ are recovered as paraphyletic, as the genus Gazella appears more closely related to the Indian blackbuck (Antilope cervicapra) than to the other two gazelle genera (Nanger and Eudorcas). Second, we recovered a strongly supported sister relationship between one of the dwarf antelopes (Ourebia) and the Antilopini subgroup Antilopina (Saiga, Gerenuk, Springbok, Blackbuck and gazelles). The assessment of the influence of taxon sampling, outgroup rooting, and data partitioning in Bayesian analyses helps explain the contradictory results of previous studies.