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ABSTRACT

Background. The Himalaya-Tibet orogen (HTO) presents an outstanding geologically
active formation that contributed to, and fostered, modern Asian biodiversity. How-
ever, our concepts of the historical biogeography of its biota are far from conclusive, as
are uplift scenarios for the different parts of the HTO. Here, we revisited our previously
published data set of the tribe Paini extending it with sequence data from the most
western Himalayan spiny frogs Allopaa and Chrysopaa and using them as an indirect
indicator for the potential paleoecological development of Tibet.

Methods. We obtained sequence data of two mitochondrial loci (16S rRNA, COI)
and one nuclear marker (Ragl) from Allopaa samples from Kashmir Himalaya as
well as Chrysopaa sequence data from the Hindu Kush available from GenBank to
complement our previous data set. A Maximum likelihood and dated Bayesian gene
tree were generated based on the concatenated data set. To resolve the inconsistent
placement of Allopaa, we performed different topology tests.

Results. Consistent with previous results, the Southeast Asian genus Quasipaa is sister to
all other spiny frogs. The results further reveal a basal placement of Chrysopaa relative to
Allopaa and Nanorana with an estimated age of ca. 26 Mya. Based on the topology tests,
the phylogenetic position of Allopaa as a sister clade to Chaparana seems to be most
likely, resulting in a paraphyletic genus Nanorana and a separation from the latter clade
around 20 Mya, although a basal position of Allopaa to the genus Nanorana cannot be
entirely excluded. Both, the placements of Chrysopaa and Allopaa support the presence
of basal Paini lineages in the far northwestern part of the HTO, which is diametrically
opposite end of the HTO with respect to the ancestral area of spiny frogs in Southeast
Asia. These striking distributional patterns can be most parsimoniously explained by
trans-Tibet dispersal during the late Oligocene (subtropical Chrysopaa) respectively
early Miocene (warm temperate Allopaa). Within spiny frogs, only members of the
monophyletic Nanorana+Paa clade are adapted to the colder temperate climates,
indicating that high-altitude environments did not dominate in the HTO before ca.
15 Mya. Our results are consistent with fossil records suggesting that large parts of
Tibet were characterized by subtropical to warm temperate climates at least until the
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early Miocene. They contradict prevalent geological models of a highly uplifted late
Paleogene proto-Plateau.

Subjects Biodiversity, Evolutionary Studies, Molecular Biology, Taxonomy, Zoology
Keywords Phylogenetic, Paini, Himalaya, Biogeography, Paleogene, Allopaa, Chrysopaa, Tibet

INTRODUCTION

The uplift of the modern Himalaya-Tibet orogen (HTO) was one of the most extensive
geological events during the Cenozoic. Today’s dimension of the HTO is thought to exert
profound influences on the regional and global climate, and, consequently, on Asian
biodiversity. Thus, understanding the evolution and knowing the past topography of the
HTO is critical for exploring its paleoenvironments and historical biogeography (Kutzbach
et al., 1989; Molnar, Boos ¢ Battasti, 2010; Raymo & Ruddiman, 1992; Zhang et al., 2018).
However, various lines of geoscientific evidence have suggested— partly substantially—
different uplift scenarios for the respective parts of the HTO (reviewed in Spicer et al., 2020).
These scenarios range from the idea of a simple monolithic rising of Tibet purely due to
crustal thickening or lithosphere modification (e.g., Wang et al., 2014; Zhao ¢ Morgan,
1985), over different models of a fractional, stepwise development (e.g., Tapponnier et al.,
2001), to the concept of a high proto-Tibetan Plateau’ (Mulch ¢ Chamberlain, 20065 Wang
et al., 2014). Linked to these varying conceptions are uncertainties in timing, quantity
(elevational increase) and sequence pattern of the HTO uplift. While several geoscientific
studies present evidence for a high elevated Tibetan Plateau (TP) as early as the Eocene
or even earlier (e.g., Kapp et al., 2007; Murphy et al., 1997; Tapponnier et al., 2001; Wang et
al., 2008; Wang et al., 2014) others assume elevations close to modern values by the latest
at the middle Oligocene (Ding et al., 2014; Quade et al., 2011; Rowley & Currie, 20065 Xu et
al., 2013) or that a massive uplift occurred in the late Neogene (e.g., Molnar, England ¢
Martiod, 1993; Su et al., 2019; Wei et al., 2016).

During the last decade, a growing number of paleontological studies provide evidence for
low elevated parts of Tibet until the early Neogene or even later; for example, the presence
of subtropical to warm temperate floras during the late Eocene to early Miocene have been
demonstrated for the basins of Hoh Xil, Kailas, Lunpola, Nima, and Qiabulin of southern
and central parts of the Plateau (Ai et al., 2019; Ding et al., 2020; Miao et al., 2016; Su et al.,
2019; Sun et al., 2014; Wu et al., 2017). These findings suggest that the present high-plateau
character of Tibet with its dominant alpine environments is apparently a recent formation
that did not emerge before the mid-Miocene. The young ages of species divergence in the
phylogenies of high-altitude taxa endemic to the plateau are a logical consequence of—and
evidence for—rather recent evolution of the TP (summary in Renner, 2016; Hofimann et al.,
2017; Hofmann et al., 2019). However, although it is becoming increasingly acknowledged
that the HTO contributed to, and fostered, modern Asian biodiversity (Johansson et al.,
2007; Steinbauer et al., 2016), our present concepts of the origin and historic biogeography
of the terrestrial biotas inhabiting the HTO are far from being complete nor conclusive
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and have been hindered by a lack of and potential misinterpretation of data (Renner, 2016;
Spicer, 2017; Spicer et al., 2020).

Phylogenies are a key mean in biogeographic and molecular evolutionary studies
(Avise, 2009; Avise et al., 2000) and increasingly recognized as being essential to research
that aim to reconcile biological and geological information to reconstruct Earth surface
processes such as mountain building (Hoorn et al., 2013; Mulch & Chamberlain, 2018). In
fact, organismal evolution offers an independent line of evidence for the emplacement
of major topographical features, which have been proved valid in refining the timing
of events substantiated by geologic record (Donoghue ¢ Benton, 2007; Richardson et al.,
2018). Specifically, several studies have demonstrated the suitability of phylogenetic data
for addressing the timing and complexity of orogenic events, e.g., the Andean uplift and the
formation of the Qinghai-Tibetan region (Antonelli et al., 2009; Luebert ¢ Muller, 2015).

We here use spiny frogs of the tribe Paini (Dicroglossidae) to untangle the spatiotemporal
evolution of this group in the HTO and, thus, as an indirect indicator for the topographic
and paleoecological development of High Asia. Spiny frogs occur across the Himalayan
mountain arc from northern Afghanistan, Pakistan, and northern India, through Nepal,
Sikkim, and Bhutan, and in the valleys of southern and eastern Tibet, eastwards to eastern
China, and southwards to the mountains of Indochina (Myanmar, Thailand, Laos, northern
Vietnam; Frost, 2021). They live mostly in boulder-rich running water (Dubois, 1975) or
clear pools with flowing water. Males are characterized by black, keratinous spines (Ohler
¢ Dubois, 2006). The Paini tribe is currently composed of the genus Nanorana Guinther,
1896 (around 30 species), Quasipaa Dubois, 1992 (11 species), Allopaa (Ohler ¢ Dubois,
2006) (possibly two species), and the monotypic genus Chrysopaa (Ohler ¢ Dubois, 2006).
Following Che et al. (2010) and our own findings (Hofmann et al., 2019), Nanorana can
be subdivided into three subgenera (Nanorana, Paa, and Chaparana). However, the
phylogenetic and mostly taxonomic relationships among Paini are not completely resolved
with several taxonomic changes during the last decade including taxa descriptions (Che et
al., 2009; Frost, 2021; Huang et al., 2016; Jiang et al., 2005; Pyron & Wiens, 2011).

Previous studies proposed contrasting hypotheses to explain the current distributional
and phylogenetic patterns of spiny frogs in the HTO. While a strict vicariance driven
scenario suggests species formation among major lineages when the species were “trapped”
in the mountain mass and become separated when it uplifted (Che et al., 2010), a more
recent study found no clear support for this model but indications for a Paleo-Tibetan origin
of Himalayan spiny frogs (Hofmann et al., 2019), confirming modern hypotheses for the
past topographic surfaces of the southern parts of the HTO. This Tibetan-origin scenario
(Schmidt et al., 2012) assumes that adaptation of Himalayan spiny frogs to the high-altitude
environment occurred in South Tibet, at a time when the Greater Himalaya had not yet
risen to its present height (Hofmann et al., 2019). With the continuously uplifting Himalaya
along with the drying of southern Tibet, these ancestral lineages have probably been forced
to follow the spatially shifted suitable habitats along the transverse river valleys of the
Himalayas, such as the Brahmaputra, Kali Gandaki, or the Indus catchment (Hofimann
et al., 2019). The hypothesis about the South-Tibetan origin has been also demonstrated
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in other Himalayan faunal elements, e.g., Scutiger lazy toads (Hofmann et al., 2017) and
forest-dwelling Pterostichus ground beetles (Schmidt et al., 2012).

So far, the phylogenetic placement of the westernmost Dicroglossid frogs that occur
in the HTO (Allopaa from Kashmir Himalaya and Chrysopaa from Hindu Kush) has
never been addressed. Given the Tibetan-origin hypothesis (Hofmann et al., 2017; Schmidt
et al., 2012), we expect that thermophile clades from the northwestern margin of the
HTO represent distinct lineages and are not closely related to any of the geographically
neighbouring lineages that occur in the Himalaya and on the central Tibetan Plateau.

If so, a basal placement of these westernmost groups relative to other Himalayan Paini
or a close relationship to thermophile taxa from the east of the Himalayan arc would
argue for Paleocene dispersal of warm temperate or subtropical lineages westward to
the northwestern margin of the HTO. Thus, integrating Allopaa and Chrysopaa into the
analysis would allow better understanding of the time at which spiny frogs have adapted
to high mountains and about which part of the paleo-HTO was occupied first by these
amphibians. Consequently, the phylogeny of these frogs is of particular interest with respect
to the controversial debate regarding the geological and paleoecological development of
High Asia (see above). Therefore, we here reanalysed our previous dataset (Hofmann et al.,
2019) by extending it with sequence data from Allopaa and Chrysopaa. We use our findings
of the Paini phylogeny and time tree to discuss the biogeographic history of these frogs
against the background of current HTO uplift concepts.

MATERIALS & METHODS

Sampling, laboratory protocols and data acquisition

We used sequence data of the 16S ribosomal RNA (rRNA), mitochondrial Cytochrome
c oxidase I (COI) and nuclear Recombination activating gene 1 (Ragl) region available
from our previous study (Hofmann et al., 2019) and complemented the data with a newly
generated sequences for these three gene regions from Allopaa hazarensis (Dubois, 1975)
(n = 6; Pakistan, including the type locality of the species - Datta, Manshera District,
Hazera Division; for details see Fig. 1 and Table S1). Sampling was performed under the
permit of the Pakistan Museum of Natural History, Islamabad, Pakistan (No. PMNH/EST-
1(89)/05), according to the regulations for the protection of terrestrial wild animals. We
also included 16S rRNA and COI sequence data of Chrysopaa sternosignata from Bagram,
Parwan Province, Afghanistan (Hindu Kush Mts.) available in NCBI GenBank (accession
numbers: MG700155 and MG699938). Our Nanorana samples from Himachal Pradesh,
which were previously referred to as “sp.” (Hofmann et al., 2019), were identified as
Nanorana vicina based on morphological characters (Boulenger, 1920; Stoliczka, 1872); for
photos of live specimens Fig. S1. Genomic DNA was isolated from ethanol tissues using the
DNeasy Blood & Tissue Kit (Qiagen, Venlo, Netherlands) according to the manufacturer’s
protocol. Approximately 571 bp of the 16S, 539 bp of the COI, and a sequence segment
of 1,207 bp of Ragl gene were amplified using primers and PCR conditions as previously
described (Hofmann et al., 2019). Amplicons were purified using the ExoSAP-IT enzymatic
clean-up (USB Europe GmbH, Staufen, Germany) and the mi-PCR Purification Kit
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Figure 1 Map showing the origin of sequence data used in this study; locality numbers refer to sam-
ples and sequences listed in Table S1.
Full-size Gal DOI: 10.7717/peerj.11793/fig-1

(Metabion, Planegg, Germany) or directly purified by Eurofins Genomics (Germany) with
in-house protocols. The Sanger sequencing was performed on an ABI 3730 XL sequencer
at Eurofins Genomics or by Macrogen Inc. (Seoul, South Korea or Amsterdam, The
Netherlands; http://www.macrogen.com).

Sequence alignment and phylogenetic reconstruction

We aligned our new 16S sequences to the previous secondary structures-based data set
(Hofmann et al., 2019) by eye; sequences of the protein-coding genes were aligned using
the MUSCLE algorithm (Edgar, 2004) in MEGA X (Kumar et al., 2018). No ambiguities,
such as deletions, insertions, or stop codons, were found neither in the alignment based
on nucleotides nor in amino acids alignment.

The concatenated rRNA + mtDNA + nuDNA sequence alignment consisted of 184 taxa
and contained 2,317 nucleotide positions of which 494 were phylogenetically informative.
Nuclear data were unphased as most of the taxa were represented by only single individuals.
We inferred a maximume-likelihood (ML) and a Bayesian inference (BI) tree based on the
concatenated sequence data using RAXML v.8.2.12 (Stamatakis, 2014), IQ-TREE v.2.0
and MrBayes v.3.2.6 (Ronquist et al., 2012). We partitioned the dataset a priori by gene
and codon fragments and used PartitionFinder 1.1.1 (Lanfear et al., 2012) to optimize
the partition scheme with the following setting: branch lengths linked, corrected Aikaike
Information Criterion (AICc), greedy search algorithm, and the substitution models
implemented in RAXML and MrBayes. RAXML was run with the GTRGAMMA model and
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1,000 bootstrap replicates on the CIPRES (Cyberinfrastructure for Phylogenetic Research)
(Miller, Pfeiffer ¢ Schwartz, 2010). IQ-TREE was performed with the edge-linked partition
model (Chernomor, von Haeseler ¢~ Minh, 2016) and both SH-like approximate likelihood
ratio test (SH-aLRT) (Guindon et al., 2010) and the ultrafast bootstrap approximation
(Hoang et al., 2018) using 1 Mio replicates per test. In the Bayesian analysis we assigned the
doublet model (16x16) proposed by Schoniger ¢~ von Haeseler (1999) to the rRNA stem
regions. Unambiguous stem pairs were inferred based on the consensus structure from
RNAsalsa 0.8.1 (Stocsits et al., 2009) and implemented in the MrBayes input file. For the
analysis of the remaining positions, the standard 4 x4 option was applied using a GTR
evolutionary model for all nucleotide partitions. The site-specific rates were set variable.
For reasons of comparison, we also inferred the Bayesian tree using the 4x4 standard
model of DNA substitution for all regions and the optimized models and partitions as
suggested by PartitionFinder. MrBayes was run with a random starting tree for five million
generations, sampling trees every 500th generation. Inspection of the standard deviation
of split frequencies as well as an effective sample size value >200 of the traces using Tracer
v. 1.7.1 (Rambaut et al., 2018) indicated convergence of Markov chains. In all analyses, we
used four parallel Markov chain Monte Carlo simulations with four chains (three heated
and one cold) and discarded the first 25% of the samples of each run as burn-in; consensus
trees were produced using the sumt command.

To test competing topologies, we used a Bayes Factor (BF) approach and the tree topology
tests implemented in IQ-TREE, namely the approximately unbiased (AU) test (Shimodaira,
2002) as well as the RELL approximation (Kishino, Miyata ¢ Hasegawa, 1990), including
bootstrap proportion, Kishino-Hasegawa test (Kishino ¢ Hasegawa, 1989), Shimodaira-
Hasegawa test (Shimodaira ¢ Hasegawa, 1999), and expected likelihood weights (Strinmmer
& Rambaut, 2002). The marginal likelihoods estimations (MLE) for the BF calculations
were obtained under each model based on both the stepping-stone (ss Xie et al., 2011)
and path sampling (ps Lartillot ¢ Philippe, 2006) methods implemented in BEAST v.1.10.4
(Suchard et al., 2018) using optimal partitions and substitution models as assessed in
PartitionFinder, 250 million generations, a logging interval of 25,000, a MLE chain length
of 1 million, and 100 path steps. Statistical support was then evaluated via 2InBF using the
ps/ss results as per Kass ¢ Raftery (1995). Finally, we also used the stepping-stone approach
with 10 million generations (4 runs and 4 chains), to estimate the model likelihood values
for BF calculation with MrBayes by implementing the doublet option on 16S rRNA stem
regions and the standard substitution option on all other regions. We specifically tested the
hard constraint vs. negative constraint on Chaparana and Allopaa. In statistical hypothesis
testing, models are compared to assess the strength of evidence against the null hypothesis
(Hy), which is defined as the one with the lower marginal likelihood (i.e., with the smaller
value of the negative log-likelihood): 2InBF <2 implies no evidence against Hy; 2—6, weak
evidence; 6-10, strong evidence; and >10 very strong evidence. For the RELL approximation
we used 1 Mio replicates, all other settings were left as default.
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Molecular dating

Divergence dates were estimated using BEAST2 v.2.6.2 (Bouckaert et al., 2014), based on
the full concatenated dataset because of missing data in the alignment for some of the taxa
(see Hofmann et al., 2019). Similar as to the MrBayes analyses, the partition scheme was
optimized using PartitionFinder and the models that are implemented in BEAST. It is not
possible to consider secondary structure information in BEAST (ambiguities are treated as
unknown data so we did not remove stem regions)—thus all positions of the respective
rRNA partition were treated under the same evolutionary model. Age constraints were
derived from our previous calibration analysis of the phylogeny of Nanorana, which based
on fossil-calibrated divergence estimates (Hofmann et al., 2019): MRCA of Paini 38.10 Ma,
28.70-47.50 (normal, sigma: 4.80); split of Tibetan Nanorana and Himalayan Paa 12.59
Ma, 7.93-17.30 (normal, sigma: 2.38); separation of the Plateau frog (N. parkeri) and N.
ventripunctata+N. pleskei 6.35 Ma, 3.54-9.16 (normal, sigma: 1.44).

Analysis relied on ten independent BEAST runs with a chain length of 50 million, a
thinning range of 5,000, a lognormal relaxed clock model, a Yule tree prior, a random
starting tree, and the site models selected by bModelTest package (Bouckaert ¢ Drummond,
2017) implemented in BEAST2. Runs were then combined with BEAST2 LogCombiner
v.2.6.2 by resampling trees from the posterior distributions at a lower frequency, resulting
in 9,010 trees. Stationary levels and convergence of the runs were verified with Tracer based
on the average standard deviation of split frequencies and ESS values >200. The final tree
was obtained with TreeAnnotator v.2.6.2 and visualized with FigTree v.1.4.3 (Drummond
¢ Rambaut, 2007).

RESULTS
Phylogeny of Paini from the HTO

In both the ML and BI analyses, a relatively well resolved tree was obtained with strong
support for most of the main clades, although with partly inconsistent and uncertain
branching patterns of lineages within (sub)clades (Fig. 2). When information on
secondary structure of 16S rRNA is considered (BI-tree), the results strongly support
three monophyletic clades within Paini, apart from the monotypic Chrysopaa: Quasipaa,
Allopaa, and Nanorana, with Allopaa forming the sister taxon to all Nanorana. Otherwise,
Allopaa clusters with Chaparana, which together form the sister clade to Paa and Nanorana
subgenera in the ML-tree (see also Fig. S2 for topology generated with IQ-TREE and with
MrBayes using the 4x4 substitution model, and Fig. 53 for ML trees based on 165+COI
and on Ragl sequence data). The most striking result, consistently recovered in all trees,
is the placement of Chrysopaa from the northern-central Afghanistan (Hindu Kush Mts.),
which forms the sister taxon to Allopaa and Nanorana.

In accordance with our previous findings, three monophyletic subclades can be
distinguished within Nanorana, namely Chaparana from montane regions of the
southeastern margin of the TP and mountains of NE China, Paa from high-montane
regions of the West, Central and East Himalaya, and nominal Nanorana from subalpine
and alpine regions of the TP and its eastern margin. Monophyly of Chaparana is not
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Figure 2 Bayesian inference (A) and Maximum-likelihood (B) tree inferred from the concatenated
mtDNA and nuDNA sequence alignment. Numbers at branch nodes refer to posterior probabilities
> 0. 9 and bootstrap values > 70, respectively. For IQ-TREE topology see supplemental Fig. S2.

Full-size &l DOI: 10.7717/peerj.11793/fig-2

supported in the analyses if secondary structure of 16S is ignored. All Paa species together
form the most species diverse clade.

Since the placement of Allopaa is of particular interest in terms of the origin and
past biogeography of Paini, we tested the resulting topologies of major clades: BI tree
considering secondary structure information of 168, t;: (Allopaa (Nanorana)); RAXML/BI
without secondary structure information, t;: ((Chaparana, Allopaa)(Nanorana sensu
stricto, Paa sensu stricto)).

The AU test does not reject one of the two placement models for Allopaa (Table 1), as
do the results of all other IQ-TREE tests. However, the BF of 28 (ss) and 32 (ps), based
on the model likelihood values estimated with BEAST, strongly rejects a basal placement
of Allopaa relative to the genus Nanorana in favor of the topology seen in the ML tree.
Similarly, the marginal likelihoods calculated based on the runs considering the secondary
structure of 16S were significantly higher for the unconstraint model (Table 1). Thus,
the phylogenetic position of Allopaa as sister clade to Chaparana seems to be most likely,
thereby making the Nanorana genus paraphyletic.

Divergence times in spiny frogs
Dating analysis suggests an origin of Paini (Allopaa, Chrysopaa, Nanorana, Quasipaa)
in the mid Oligocene (28.21 Ma, 20.11-35.18 Ma), what is in the range of previous
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Table 1 Tree topology comparisons between the two models of Allopaa placements. Models (t;, t,) are compared based on Bayesian factor (BF) using BEAST, as well
as the unbiased (AU) test (Shimodaira 2002), bootstrap proportion using RELL method (Kishino, Miyata ¢ Hasegawa, 1990), Kishino-Hasegawa (KH) test (Kishirno ¢
Hasegawa, 1989), Shimodaira-Hasegawa (SH) test (Shimodaira ¢ Hasegawa, 1999), and expected likelihood weights (ELW) using IQ-TREE; BF was also calculated for a
hard constraint on Chaparana and Allopaa (A+Ch) vs. an unconstraint constellation using the stepping-stone approach in MrBayes and considering the secondary struc-

ture information of 16S.

Topology ps ss 2InBF logL deltaL bp-RELL p-KH p-SH c-ELW p-AU
t; (A(N)) —15471 —15477 ps: 32 —14164.109 2.458 0.397+ 0.383+ 0.383+ 0.399+ 0.383+
t; ((A+Ch)(P,N)) —15455 —15463 ss: 28 —14161.652 0 0.603+ 0.617+ 14+ 0.601+ 0.617+
(A+Ch) —16472
ss: 56
unconstraint —16500
Notes.

A, Allopaa; C, Chaparana; N, Nanorana (genus); P, Paa; ps, path sampling log marginal likelihood; ss, stepping-stone log marginal likelihood; +, a tree is not rejected if its p-value > 0.05.
Bold log marginal likelihood values indicate the model most favored by a method (higher is better).
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estimations (Che et al., 2010; Hofmann et al., 2019; Sun et al., 2018) (Fig. 3). The age of
Himalayan-Tibetan spiny frogs (Allopaa, Chrysopaa, Nanorana) is estimated to be 25.7
Ma (18.70-32.16). Within crown Allopaa+Nanorana, the clade comprising the montane
Chaparana and West-Himalayan Allopaa split from the Central/East Himalayan and
Tibetan Nanorana (subgenera Paa and Nanorana) in the early Miocene, around 20
Ma, followed by the separation of Chaparana and Allopaa ca. 3 million years later. The
divergence of the nominal Nanorana (endemic to the TP) from Paa (Greater Himalaya)
occurred around 15 Ma (11.45-18.27 Ma). This estimate is close to the age of 13 Ma (7-25
Ma) calculated by Sun et al. (2018), and 10-12 Ma estimated by Wiens et al. (2009).

Diversification of Central Himalayan Paa clades has taken place continuously during
the whole Mid to Late Miocene. Most of the main lineages within Paa were present at least
in the late Miocene, and nearly all species are not younger than the Pliocene.

DISCUSSION

We here report the first phylogeny of the westernmost HTO Paini taxa Chrysopaa
sternosignata and Allopaa hazarensis in the context of their closest relatives. Our work
based on sequence information of A. hazarensis specimens from the foothills of the
Kashmir Himalaya, a previously published data set (Hofmann et al., 2019), and additional
sequence data of C. sternosignata from the Hindu Kush Mts. in Afghanistan available from
GenBank. The study provides evidence for an early-Miocene evolution of Himalayan Paini,
which is ultimately linked to the paleoecological evolution of the HTO.

Consistent with our previous results (Hofmann et al., 2019), the Southeast Asian genus
Quasipaa is sister to all other spiny frogs. Most remarkable, the monotypic Chrysopaa
is placed basally relative to Nanorana and Allopaa, supporting the presence of ancestral
Paini lineages in the far northwestern part of the HTO, which is diametrically opposite
end of the HTO with respect to the ancestral area of spiny frogs that is assumed to be the
Paleogene East or Southeast China (Che et al., 2010; Hofmann et al., 2019). Thus, it can be
assumed that the ancestor of Chrysopaa appeared elsewhere near the eastern margin of
the HTO during the late Oligocene-early Miocene. If so, it implies that members of the
Chrysopaa stem group must have been temporarily present in the interior of the HTO
during the following time, to enable a range expansion up to the western margin of the
mountains system. Given this scenario, the climatic preferences of ancestral spiny frogs
are of particular interest. Amphibians are particularly sensitive to changes in hydric and
thermal environmental conditions (Kerby et al., 2010; Mitchell & Janzen, 2010; Ochoa-
Ochoa et al., 2012; Stuart et al., 2004), and many of them show remarkable evolutionary
stasis in ecological niches, suggesting that dispersal might have been historically constrained
between similar climatic conditions (Konzak ¢» Wiens, 2010; Wiens, 2011, and references
therein). Since all species of the most basal clade Quasipaa occur under subtropical climate
(Frost, 20215 Bain ¢ Hurley, 2011), a similar temperature preference might be assumed
for the Chrysopaa ancestor. We suspect that this preference has not changed significantly
during the Neogene period as C. sternosignata occurs under subtropical to warm temperate
climate conditions in the colline zone of the Hindu Kush Mts. and the Kashmir valley
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(Khan, 20065 Sarwar et al., 2016; Wagner et al., 2016). Consequently, a subtropical climate
associated with sufficient humidity suitable for amphibians might have existed in large
parts of the late Oligocene-Tibet to allow a trans-Tibetan dispersal of Chrysopaa stem group
members. Interestingly, basal divergences of West Himalayan taxa are also known from
the gekkonid genus Cyrtodactylus, dating even back to the early Eocene and demonstrating
that ancestral Cyrtodactylus were present in the “proto-Himalayan region” (Argawal et al.,
2014). The topology of the genus provides striking parallels to the Paini tree and indications
in support of a Tibetan-origin (Hofmann et al., 2017; Schmidt et al., 2012; Hofmann et al.,
2019) of Cyrtodactylus followed by a trans-Tibetan dispersal of ancestral lineages to the
northwestern HTO margin.

Also unexpected are our results with respect to the phylogenetic position and timing of
the evolution of Allopaa from the foothills of the Kashmir Himalaya. This group evolved
during the early to mid-Miocene most parsimoniously as sister clade to Chaparana,
although a basal position of Allopaa relative to the genus Nanorana cannot be entirely
excluded. Species of Chaparana occur along the eastern margin of the HTO and therewith
at the opposite end of the HTO where Allopaa is distributed. A similar paradoxical pattern
can be found in the above mentioned Cyrtodactylus group (Argawal et al., 2014) and in
Broscini ground beetles (Schmidt, Wrase ¢ Sciaky, 2013) with species from the western
Himalaya being most closely related to those from the Eastern Himalaya and Southeast
Asia. Chaparana and Allopaa together constitute most likely the sister clade to the Tibetan
Nanorana and Himalayan Paa, which indicates that Nanorana might be paraphyletic with
respect to Allopaa. However, to prevent instability in taxonomic nomenclature, at this
stage we refrain from proposing any taxonomic changes until further evidence is available.
Our results also show that Allopaa is phylogenetically not related to the biogeographically
neighboring Himalayan spiny frogs. This finding is crucial with respect to the ancestral
distributional area of the Chaparana+Allopaa clade and their ancestral habitat preferences.
Recent species of Chaparana occur in the colline and lower montane zone along the
eastern margin of the HTO and the easterly neighbored mountains and, thus, immediately
adjacent to (or overlapping with) the supposed ancestral area of spiny frogs (Che et al.,
2010; Hofmann et al., 2019). Similar as assumed for Chrysopaa, the ancestor of Allopaa
must have been dispersed across a moderately elevated Tibetan Plateau, although about
eight million years later than the ancestor of Chrysopaa. Since species of Allopaa occur
under warm-temperate conditions in the colline to lower montane zone (comparable to
those of its sister group Chaparana; Ahmed et al., 2020), similar temperature preferences
can be assumed for ancestral Allopaa. Therefore, the supposed trans-Tibet dispersal event
of this lineage implies the presence of warm temperate conditions in significant parts of
Tibet’s interior at least up to the early-mid Miocene boundary. This is supported by the
evidence of subtropical to warm-temperate fossil floras in the Qiabulin basin at 21-19 Ma
(Ding et al., 2014), Lunpola basin at 25.5-19.8 Ma (Sun et al., 2014) and in the Kailas basin
at about 23.3 Ma (Ai e al., 2019). Due to the progressive uplift of Tibet and the associated
continuous cooling of the regional climates, the Allopaa stem group members might have
successively been lost to extinction. Today’s absence of members of Chaparana and Allopaa
in the high montane zone throughout the HTO suggests that these lineages were probably
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not able to adapt fast enough to the conditions that resulted from the dramatically changing
environment. Alternatively, a westward and northwestward spread of ancestral Allopaa
using subtropical to warm-temperate habitats which paralleling the southern slopes of
the Himalaya must also be considered. However, this model is very unlikely, as it would
imply extinction of all ancestral lineages in fast areas covering almost the whole Himalayan
mountain arc. Considering that since the onset of surface uplift subtropical to warm
temperate environments were continuously present along the Himalayan southern face
(Hongfu, 1994; Sanyal & Sinha, 2010; Xu et al., 2012), such radical extinction or turnover
is implausible given the recent and former ecological conditions in this area. Moreover,
the absence of Allopaa, but occurrence of many spiny frogs of the subgenus Paa along the
southern slopes of the eastern, central, and western Himalaya north to the Indian Himachal
Pradesh, contradicts this extinction scenario.

Unlike spiny frogs of the taxa Chrysopaa, Allopaa and Chaparana which are restricted
to the subtropical to warm temperate climate, many representatives of the Nanorana
+Paa clade are adapted to colder habitats and occur in the high montane, subalpine, and
alpine zones of the HTO. The evolutionary late appearance of this clade is indicative for
the minimum age of high-altitude environments in the HTO: Although spiny frogs were
present in the area since at least the Paleogene/Neogene boundary, cold-adapted species
did not evolve before ca. 15 Ma (Fig. 3). This is a strong hint that extensive high-altitude
environments were present in the HTO from mid-Miocene at earliest.

CONCLUSIONS

We provide the first phylogenetic study of spiny frogs that comprises the two westernmost
Himalayan taxa Allopaa and Chrysopaa. Our findings suggest a late Oligocene to early
Miocene dispersal of two subtropical respective warm temperate lineages, Chrysopaa and
Allopaa, from the ancestral area of spiny frogs in SE Asia across the HTO into its far
northwestern part. This dispersal scenario is crucial with respect to the long-standing
debate regarding the paleoenvironmental and paleoelevational development of the TP.
Given the stem age of subtropical Chrysopaa of ca. 26 Mya and the divergence time of 17
Mya between warm temperate Allopaa and Chaparana, our results strongly indicate the
large-scale presence of subtropical environments north of today’s Greater Himalaya until
the late Oligocene, and of warm temperate climates until the late Miocene. This contrasts
with geoscientific models of the paleoelevational evolution of the TP which assume large
scale surface uplift close to present heights until the mid-Oligocene (e.g., Kapp et al.,
2007; Mulch & Chamberlain, 2006; Tapponnier et al., 2001; Wang et al., 2008; Wang et al.,
2014), and which are widely used in recent biogeographic studies to develope evolutionary
scenarios in different species groups (e.g., Favre et al., 2015; Favre et al., 2016; Renner, 2016;
Mosbrugger et al., 2018). However, over the last decade a growing number of fossil data
provide evidence for the presence of tropical to warm temperate floras and freshwater
fishes in central Tibet during the late Paleogene until the early Neogene (Song ef al., 2010;
Suetal., 2019; Wei et al., 20165 Wu et al., 2017). Consistent with these findings our results
support the recent concept proposed by Spicer and colleagues (Spicer et al., 2020), which
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assumes that the TP was not uplifted as a whole, but instead, a deep wide east—west oriented
valley occurred in the Tibetan interior before the final plateau formation. We suspect that
this supposed valley represents the migration corridor of the ancestral Chrysopaa and
Allopaa lineages, which today are represented by the two relict taxa, C. sternosignata and A.
hazarensis, endemic to the region of the Hindu Kush and Kashmir Himalaya. This scenario
is in line with and adds to the Tibetan-origin hypothesis of the paleo-Tibetan fauna
(Hofmann et al., 2017; Hofmann et al., 2019; Schmidt, Wrase & Sciaky, 2013). Disjunct
distribution patterns of species groups between the eastern and western part of the HTO, as
we demonstrate here for spiny frogs, have been also observed in Cyrtodactylus (Argawal et
al., 2014, see Discussion), and in Broscini ground beetles, with the genus Eobroscus widely
distributed in East Asia and Indochina and with Kashmirobroscus endemic to a small part of
the Kashmir Himalaya (Schmidt, Wrase ¢~ Sciaky, 2013). Moreover, the Kashmir Himalaya
is well-known for the occurrence of several highly endemic ground beetles (Schmidt et al.,
2012). We expect that numerous additional lineages endemic to the Kashmir Himalaya
will be identified in future which may contribute to resolve the evolution of the HTO.
We therefore encourage further and systematic research in this area and the use of more
powerful molecular data, for example, through the use of genomic sequencing to better
understand the evolution and Cenozoic history of Himalayan biodiversity against the
background of existing geological scenarios.
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