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Abstract
Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, 
the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data 
sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we 
evaluated whether different statistical models were able to provide useful predictions of absolute and rela-
tive alien species richness, as a function of explanatory variables representing geographical, environmental 
and socio-economic factors. Five state-of-the-art count data modelling techniques were used and com-
pared: Poisson and negative binomial generalised linear models (GLMs), multivariate adaptive regression 
splines (MARS), random forests (RF) and boosted regression trees (BRT). We found that predictions 
of absolute alien species richness had a low to moderate accuracy in the region where the models were 
developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a 
superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type tech-
niques (RF and BRT) were shown to be significantly better in modelling alien species richness than para-
metric linear models (such as GLM), despite the latter being more commonly applied for this purpose. 
Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of 
the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, 
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our results strongly suggest that predictability of spatial variation in richness of alien species richness is 
limited. The somewhat more robust ability to rank regions according to the number of aliens they have 
(i.e. relative richness), suggests that models of aliens species richness may be useful for prioritising and 
comparing regions, but not for predicting exact species numbers.

Keywords
biological invasions; clamping; model evaluation; predictive modelling; transferability

Introduction

Knowing the distribution patterns of alien species richness is increasingly crucial for as-
sessing and monitoring global biodiversity (Dornelas et al. 2014, Tittensor et. al. 2014, 
Capinha et al. 2015, Latombe et al. 2017). Knowledge about alien species richness is 
also required by environmental managers and researchers to assist in decision-making 
of tasks such as ecosystem restoration (Catford et al. 2012), the identification of points 
of entry for introduced species (e.g. Seebens et al. 2013), the quantification of impacts 
posed by invasive alien species (i.e. the subset of alien species that have harmful effects 
on the recipient ecosystems; Blackburn et al. 2014) or the assessment of the ecological 
degradation of habitats (Vandekerkhove et al. 2013).

Despite substantial progress being made in the availability of alien species distribu-
tions, there still are numerous regions worldwide for which alien species richness data 
are lacking or highly incomplete (Dawson et al. 2017, Pyšek et al. 2017). These gaps 
occur at multiple spatial scales and, although often related to lower levels of socioeco-
nomic development (McGeoch et al. 2010), they can also be found in generally well-
studied taxonomic groups and regions (Pyšek et al. 2008, 2010). A further challenge 
for preparing an inventory of alien species richness is the highly dynamic nature of 
alien species spread, which requires regular updates as time progresses (McGeoch et al. 
2010, Tittensor et al. 2014, Seebens et al. 2017).

Despite the relevance of information on alien species richness, little work has been 
done to assess whether alien species richness can be accurately predicted for areas where 
such data are lacking. If this metric is possible to predict with accuracy, then available 
data can be used to geographically broaden the current knowledge on biodiversity pat-
terns and to support conservation and alien species management decisions in areas that 
are currently not surveyed. Further, high reliability of predictive models would enable 
the integration of predictive modelling in alien species mapping.

Two main lines of modelling approaches are used for predicting alien species rich-
ness. The first consists of the use of stacked species distribution models (e.g. Bertels-
meier et al. 2015). Here, alien species distributions are modelled individually as a 
function of environmental factors and the predictions are turned into binary maps of 
species’ presence/absence. Predictions of alien species richness in regions are obtained 
by stacking the individual maps. The second approach consists of statistical modelling 
of alien species richness directly as a function of environmental factors (e.g. Jarnevich 
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et al. 2006, Nobis et al. 2009). The framework for this approach is similar to that of de-
scriptive models relating alien species richness to spatial factors (e.g. Kühn et al. 2003, 
Westphal et al. 2008, Pyšek et al. 2010, Blackburn et al. 2016, Capinha et al. 2017, 
Dawson et al. 2017), but it goes one step further by using the identified relationships 
to make predictions.

Species distribution modelling has been intensively applied to alien species in re-
cent years and modelling practices are increasingly refined (e.g. Calabrese et al. 2014). 
Thus, one might expect that the stacked modelling approach would be a preferred 
means for predicting alien species richness. However, stacked species distribution 
models, which imply developing models for each species individually, are data- and 
resource-demanding and may not be applicable when a high number of species or 
regions are involved. For instance, one would need to have at least 10 times as many 
presence points as one has predictor variables (Babyak 2004) – and ideally at least as 
many absence points (but see MaxEnt; Elith et al. 2011). Further, in species distribu-
tion models, one of the most important fundamental assumptions, i.e. the species 
modelled being in equilibrium with the environment, is violated. This would lead to 
underestimating the potential niche space of the species and would result in biased 
models, usually leading to incorrect predictions and inflated turnover rates in projec-
tions (Pompe et al. 2008, Pompe et al. 2011). In this context, statistical models directly 
relating alien species richness with spatial drivers (hereafter referred to simply as “spe-
cies richness models”) become particularly relevant as they are less data-demanding. 
However, benchmarking the accuracy and performance of these models using typical 
datasets of alien species distributions has rarely been done, which hampers the assess-
ment and comparison of the model predictions.

Here, we perform a formal evaluation of the ability of species richness models to 
predict the richness of alien species. We measure and compare the predictive accura-
cies of five modelling techniques extensively used in ecology: i) a Generalised Linear 
Model (GLM) using a Poisson distribution (GLM-P), ii) a GLM using a negative 
binomial distribution (GLM-NB), iii) boosted regression trees (BRT), iv) multivariate 
adaptive regression splines (MARS) and v) random forests (RF). We assess the ability 
of the modelling techniques to predict within the geographical range of the model’s 
calibration data (i.e. “geographical interpolation”) and in new, spatially independent 
regions (i.e. transferability or “geographical extrapolation”; Wenger and Olden 2012). 
We perform this assessment using a collection of 22 datasets of alien species richness 
analysed in previous studies.

Methods

Alien species richness data

We collected 22 typical data sets of alien species richness from previous studies 
(Table 1). Each dataset provides the total number of established alien species in distinct 
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geographical units (hereafter referred to as ‘regions’), such as countries, sub-national 
administrative regions (e.g. federal states, provinces) or islands. Ten taxonomic groups 
are covered by the data. Spatial coverage (extent) differs widely, ranging from the whole 
world, the European continent, temperate and subtropical regions to oceanic islands.

In order to have a common geographical basis for the assignment of values of the 
predictor variables (below), we matched each region with the corresponding polygon 
of the Global Administrative Areas Database v.2.8 (GADM; http://www.gadm.org/). 
The GADM is the most detailed delimitation of worldwide administrative divisions 
available. We excluded all regions that we could not identify unambiguously, that had 
no geographical match in GADM and also regions that were smaller than 1 km2 ‒ the 
highest spatial resolution provided by gridded predictor variables; see below. In some 
cases, this resulted in reduced numbers of records compared to the original datasets 
(62% to 100% of the records in the original datasets kept for our analyses, average = 
92% ± 10.2%). Most data sets in our collection contain a relatively low number of re-
gions with 15 datasets consisting of less than 100 regions and 7 of less than 50 regions 
(Table 1).

Predictor variables

We selected nine explanatory variables representing factors that have been shown in 
previous studies to explain the variation in alien species richness (Kühn et al. 2003, 
Lambdon et al. 2008, McGeoch et al. 2010, Pyšek et al. 2010, Essl et al. 2011, Essl 
et al. 2013, Blackburn et al. 2016, Dawson et al. 2017, Kühn et al. 2017). These vari-
ables were: geodesic area (log-transformed); insularity (island/mainland); mean annual 
temperature; mean annual precipitation; diversity of bioclimatic types; geographical 
isolation; GDP per capita; human population density and proportion of area covered 
by urban land use.

Geodesic area (km2) was measured using the spatial polygon of the region after 
re-projection to a Mollweide equal area projection. Insularity was a binary variable (is-
lands or mainland regions). Mean annual temperature and mean annual precipitation 
represent region-wide averages of the corresponding climatic conditions (at ca. 1×1 
km) derived from WorldClim (http://www.worldclim.org/). We defined bioclimatic 
diversity as the total number of distinct bioclimatic types delimited by Metzger et al. 
(2013) that are found within a region. The bioclimatic types defined by Metzger et al. 
(2013) consist of 125 divisions that group relatively homogeneous environmental con-
ditions at the global scale. Geographical isolation corresponded to the shortest travel 
time possible in the region to reach a populated place with 50,000 or more people as 
mapped by Nelson (2008). For each region, we extracted the minimum travel value 
found in the region. Gross Domestic Product (GDP) per capita in 2005 – in pur-
chasing power parity-constant 2005 US dollars – and human population size were 
retrieved mainly from the World Development Indicators (http://data.worldbank.org/
data-catalog/world-development-indicators) and Gennaioli et al. (2014) but also from 

http://www.gadm.org/
http://www.worldclim.org/
http://data.worldbank.org/data-catalog/world-development-indicators
http://data.worldbank.org/data-catalog/world-development-indicators
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a few other sources including national and regional statistical agencies, Index Mundi 
(http://www.indexmundi.com/) and online reports. When data for the year 2005 was 
not available, we used data for the closest available year from the first decade of the 
21st century. Human population density was calculated by dividing population size of 
the region in 2005 by its area. The proportion of area covered by cities was calculated 
by dividing the area of urban land cover of the region – as measured from GlobCov-
er2009 (http://due.esrin.esa.int/page_globcover.php) – by region size. For each data 
set, we tested for redundancy amongst the predictors using pairwise Pearson correla-
tion and selected only predictors that were moderately correlated (|r|<0.7, Dormann et 
al. 2013). The final set of predictors considered for each dataset is shown in the Suppl. 
material 1: Table A1.

We performed all data processing in R (v. 3.4.1) (www.R-project.org/). The extrac-
tion of values from the source gridded datasets was done using the ‘extract’ method of 
the RASTER (v. 2.3-40) package.

Modelling techniques used for predicting species richness

We tested five techniques for modelling alien species richness: i) GLM-P using a Pois-
son distribution, ii) GLM-NB using a negative binomial distribution, iii) boosted re-
gression trees using a Poisson distribution (BRT), iv) multivariate adaptive regression 
splines (MARS) and v) random forests (RF). These methods were selected because they 
fall into different positions along the spectrum of statistical assumptions and mod-
elling architectures, allowing a number of relevant comparisons. These include i) a 
comparison of GLMs having a restrictive (GLM-P) and a more relaxed distribution-
al assumption (GLM-NB); ii) comparison of GLMs with machine learning models 
(BRT, MARS and RF) and iii) comparison of a linear regression-type machine learn-
ing model (MARS) with tree ensembles-type machine learning models (BRT, RF). We 
briefly describe each of the modelling techniques used in the Suppl. material 1: Text 
A1. Their implementation is described below.

Generalised linear models using Poisson and negative binomial distributions

We implemented GLM-P using the standard ‘glm()’ function of R and GLM-NB 
using the ‘glm.nb()’ function of the MASS (v. 7.3–37) package. The theta parameter, 
which represents the dispersion of the data in the calculation of the variance of the 
NB distribution, was estimated by means of maximum likelihood. An important step 
in the application of GLMs is to identify the ‘best’ combination of predictors (Brewer 
et al. 2016), especially when multiple “best models” can be found due to collinearity 
(Dormann et al. 2013). We adopted a multi-model inference approach (Burnham and 
Anderson 2002), in which we identified the combination of predictors that were best 

http://www.indexmundi.com/
http://due.esrin.esa.int/page_globcover.php
http://www.R-project.org/
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supported by the Akaike information criteria corrected for small sample sizes (AICc). 
We tested two options to select the models used for comparison with other meth-
ods. First, we simply used the model receiving the highest support from AICc. Sec-
ond, we accounted for the possibility of multiple models receiving strong support, i.e. 
Δ AICc < 2 and corresponded to the use of the average of their coefficients. To avoid 
overfitting the models by including more predictor variables than warranted by the 
number of observations available (Babyak 2004), the maximum number of predictor 
variables considered simultaneously in each multi-model comparison was set to one 
tenth of the number of observations being used for model calibration (Babyak 2004). 
The multi-model assembly and calculation of AICc were performed using the R pack-
age MUMIN (v. 1.13.4).We found the accuracy of predictions from these two options 
to be virtually identical (Suppl. material 1: Table A2) and used the results for the best 
supported model by AICc for comparison with other methods. For GLM-P, over-dis-
persion was calculated and detected for several of the datasets used in this study (Suppl. 
material 1: Table A3). For these cases, we also performed multi-model comparisons 
using the quasi Akaike Information criterion corrected for small sample size, QAICc, a 
criterion more suitable for model selection in the presence of over-dispersion. Adopt-
ing QAICc, however, did not improve the models nor change the general outcome 
(results not shown).

Hurdle models (Potts and Elith 2006) using GLM-P and GLM-NB were also 
implemented for a subset of datasets with zero inflation (for details on implementa-
tion see Suppl. material 1: Text A1). We found that small sample sizes impeded model 
convergence for some datasets and that predictions from converging models were not 
significantly superior to those from ‘plain’ GLM’s (Suppl. material 1: Text A1). Accord-
ingly, we refer no further to the results from hurdle models in our work.

Multivariate adaptive regression splines

Multivariate adaptive regression splines (MARS; Friedman 1991) were implemented 
using the EARTH (v. 4.2) package of R. Interactions amongst predictor variables were 
not considered (i.e. only additive models), as preliminary tests revealed that interac-
tions did not improve predictive performances (results not shown). Exhaustive prun-
ing, a method that considers all candidate model terms, was used for selecting those to 
keep in the final MARS model.

Random forests

Random forests (RF; Breiman 2001) were implemented using the ‘randomForest’ 
(v. 4.6–10) package for R. All models corresponded to an ensemble of 1000 trees and 
used a random selection of 4 predictors as candidates for branch splitting.
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Boosted regression trees

To implement Boosted regression trees (Elith et al. 2008), we used the ‘dismo’ (v. 1.1-
4) package for R with an assumed Poisson distribution for the response variable. For 
all models, we used a learning rate of 0.001, which implies a fairly low contribution of 
each tree added to the model and imposes a desirably high number of total trees in the 
ensemble (often > 1000) (Elith et al. 2008). Remaining parameters were kept at default 
values. Following the fitting of models using all predictors, we performed a stepwise 
variable selection procedure, in which any predictor not contributing to the decrease 
in model deviance was removed (Elith et al. 2008).

Assessment of predictive performance

The performance of the previous techniques in predicting alien species richness for each 
of the 22 datasets was assessed using two distinct approaches. The first was a leave-one-out 
cross-validation (Wenger and Olden 2012). In leave-one-out cross-validation, the model 
is fitted and used to predict one hold-out observation at a time. This is repeated until all 
observations are used for validation. This approach provides unbiased estimates of in-sam-
ple predictive accuracies, but does not allow assessing the model performance for predic-
tions outside the spatial range covered by the data set (Wenger and Olden 2012). The sec-
ond approach was a k-fold regional cross-validation (Jiménez-Valverde et al. 2011). This 
approach, which relies on the use of geographically distinct subsets of the data, provides a 
reliable assessment of the accuracy of the predictions made to new, unrelated, geographi-
cal domains ‒ i.e. it assesses the spatial transferability and generality of the relationships 
identified by the models (Wenger and Olden 2012). Here we used a 4-fold regional cross-
validation in which each dataset was divided into four geographical quadrants based on 
the centroids of all regions. Then, regions in three quadrants were used for model fitting 
while one was left-out for model evaluation. The procedure is repeated four times, so that 
all possible three quadrant-combinations are used for model calibration.

The assessment of validation accuracy was made for two criteria: (1) agreement be-
tween reported and predicted absolute values of alien species richness and (2) agreement 
between the rank order of reported and predicted alien species richness. For the first 
criterion, we calculated the ‘relative absolute error’ (RAE). An RAE of zero represents a 
perfect match between predicted and observed values, while 100% corresponds to the 
level of error that is obtained if all predictions simply represent the average of the alien 
species richness values used for evaluation (Witten et al. 2016). For the second criterion, 
we compared the Spearman rank correlation (ρ) between predictions and left-out obser-
vations. Both criteria were calculated using the RMINER (v. 1.4) package.

Two distinct evaluation assessments were made for GLM-P, GLM-NB and MARS, 
in order to account for their greater susceptibility to errors when predicting beyond the 
sampling space of the calibration data (i.e. when extrapolating). While BRT and RF ‘do 
not extrapolate’ because they use the closest known subspace of the calibration data as 
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target for the prediction (Elith and Graham 2009), GLM-P, GLM-NB and MARS as-
sume that the trend of fitted responses continues outside the sampling space, which may 
lead to predictions of unrealistically high values of richness. The first evaluation con-
sisted of performing the predictions from GLM-P, GLM-NB and MARS without any 
constraints. The second evaluation consisted in constraining these models to mimic the 
behaviour of BRT and RF by means of ‘clamping’ (Elith and Graham 2009). Clamping 
corresponds to setting the range margins of values used for prediction to the range mar-
gins found in the model calibration data. That is, if (x < min) then x = min or if (x > max) 
then x = max; where x is the value of the predictor in the test data and min and max are 
the minimum and maximum values of the predictor in the calibration data, respectively.

Multiple pairwise Wilcoxon tests were used to test for significant differences in 
RAE and ρ between the five modelling techniques. The differences were assessed by 
comparing the performances achieved by each method in the 22 datasets of alien spe-
cies richness tested. In the case of GLM-P, GLM-NB and MARS, pairwise Wilcoxon 
tests were also used to compare the accuracy from clamped versus the not clamped 
versions of the predictions.

Spatial autocorrelation

Spatial autocorrelation (SAC) in the distribution of alien species richness may lead to 
incorrect model parameter estimates (Dormann et al. 2007), even resulting in chang-
ing the sign of the relationship (Kühn 2007). Testing for transferability is particularly 
important when the autocorrelation structure of the areas of calibration and prediction 
differ (as in the case of cross-validation applied here). We tested for SAC in the residu-
als in all models during the regional cross-validation process by means of correlograms 
showing the correlation amongst Pearson residuals of regions over a range of uniformly 
distributed distance classes. The statistical significance of the correlations was based 
on 1000 permutations for the values of the residuals. The package NCF (v. 1.1-7) for 
R was use to perform the analyses. We found no or limited SAC in the residuals for 
the majority of models. A few significant autocorrelations occurred, but these were 
generally of low magnitude and did not tend to be conserved across the four-folds of 
regional cross-validation or across the different modelling techniques. These results led 
us not to consider the application of predictive models explicitly accounting for SAC.

Results

Predictive performance of alien species richness using leave-one-out cross-validation

Results for the leave-one-out cross-validation ‒ which assesses the accuracy of predic-
tions made for within the geographical range of the data ‒ show that RF and BRT 
provided the comparably best performances (Figure 1a; Suppl. material 1: Table A4). 
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Figure 1. Detailed legend: Accuracy was measured for generalised linear models using Poisson (GLM-P) 
and negative binomial distributions (GLM-NB), boosted regression trees (BRT), random forests (RF) and 
multivariate adaptive regression splines (MARS) for predictions of the total number of alien species per 
region (relative absolute error, RAE; lower is better) (a, b) and the rank order of each region (Spearman’s 
rho; higher is better) (c, d). Boxplots represent variations in accuracy across 22 datasets of alien species 
richness for GLM-P, GLM-NB, RF and MARS, but not for BRT. Due to model convergence issues, re-
sults for BRT comprise only a subset of datasets and are thus not directly comparable with the results of 
the other techniques. Panels in the right left (a, c) refer to predictions evaluated using a leave-one-out ap-
proach, which measures the accuracy of predictions within the geographical range of the model calibration 
data. Panels in the right (b, d) refer to predictions evaluated using a four-fold regional cross-validation 
approach, which assesses the spatial transferability of the models. A few outliers lie outside the ranges of 
the Y-axes, see Tables A2 and A3 for the complete list of values.

Still, these two techniques had a median RAE of about 76% and five or less datasets 
had a RAE higher than 90% (Figure 1a; Suppl. material 1: Table A4). The predictive 
performance of these two techniques was not significantly different from one another 
and both performed significantly better than GLM-P, GLM-NB and MARS (p < 0.05; 
Wilcoxon rank-sum test) (Table 2A). For GLM-P and GLM-NB, about half or more 
datasets had a RAE of 90% or higher.

The application of data ‘clamping’ in predictions of GLM-P, GLM-NB and MARS 
resulted in improvements in predictive performance for nearly all datasets (Suppl. ma-
terial 1: Table A5). However, this improvement was only statistically significant for 
GLM-P (p < 0.05; Wilcoxon rank-sum test).

Regarding the predictions for the relative order of regions in alien species rich-
ness, these were more accurately predicted by RF (median ρ = 0.63), closely followed 
by BRT (median ρ = 0.62). The higher performance of RF was significantly different 
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from the performances achieved by GLM-P, GLM-NB and MARS (p < 0.05; Wil-
coxon rank-sum test), but not for BRT (p > 0.05). BRT was also significantly better in 
predicting the relative order of regions in terms of alien species richness than the two 
GLM-type models (p < 0.05). The application of clamping to GLMs and MARS did 
not significantly alter their accuracy (p > 0.05; Wilcoxon rank-sum test). A reasonable 
number of data sets achieved high (ρ > 0.6) degrees of correlation between the predict-
ed and observed order of regions, particularly for the two best performing techniques 
(RF and BRT), whereas weak (ρ < 0.25) correlations were less common (Figure 1C; 
Suppl. material 1: Table S4).

Predictive performance of alien species richness using regional cross-validation

Results for the 4-fold regional cross-validation, which assesses the transferability of model 
predictions, showed a consistently worse predictive accuracy than the one evaluated by 
leave-one-out cross-validation. All modelling techniques showed substantially higher 
medians of RAE (Figure 1B; Suppl. material 1: Table A6) and, in the case of MARS, 
RF and BRT, the lower performance than their counterparts, evaluated by leave-one out 
cross-validation, was statistically significant (p < 0.05; Wilcoxon rank-sum test).

The least inaccurate technique was RF (median RAE = 95.1%; interquartile range 
= 25.5%) (Figure 1B; Suppl. material 1: Table S6) which showed significant (p < 0.05; 
Wilcoxon rank-sum test) to marginally significant (p < 0.1) differences in all pairwise 
comparisons with the other methods (Table 2B). Despite performing best, RF still 
delivers a substantial amount of error. For ten datasets, the predictions of alien species 

Table 2. Results of pairwise Wilcoxon tests of significant differences for the performance of the tech-
niques for predicting absolute richness (as measured by relative absolute error) using leave-one-out cross-
validation (A) and regional cross-validation (B). Predictions of GLM-P, GLM-NB and MARS refer to 
models using ‘clamped’ data (see main text). Significant differences (at α = 0.05) are shown in bold.

A
GLM-P GLM-NB MARS RF

GLM-P ‒
GLM-NB 0.341 ‒
MARS 0.33 0.103 ‒
RF < 0.001 < 0.001 0.02 ‒
BRT 0.003 < 0.001 0.036 0.953
B

GLM-P GLM-NB MARS RF
GLM-P ‒
GLM-NB 0.622 ‒
MARS 1 0.597 ‒
RF 0.058 0.011 0.04 ‒
BRT 0.263 0.561 0.159 0.004
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richness were worse than the ones obtained if using simply the mean absolute value 
of alien species richness (i.e. RAE > 100%) and, only for eight data sets, the accuracy 
of RF was clearly superior (RAE ≤ 90%) to this benchmark (Suppl. material 1: Table 
A6). All remaining techniques performed worse, with median performance above the 
100% RAE benchmark (Figure 1B; Suppl. material 1: Table A6). In addition, BRT is 
demanding in terms of sample size and could not be fitted for 7 of the smallest datasets 
(mean n = 38, S.D. = 10). The remaining techniques were able to fit models for all 
datasets. No significant differences in performance were found between any two tech-
niques other than with RF (Table 2B).

Similarly to what was verified for leave-one-out cross validation, the application of 
data ‘clamping’ in predictions of absolute alien species richness by GLM-P, GLM-NB 
and MARS resulted in clear increases in predictive performances for nearly all datasets 
(Suppl. material 1: Tables A6 and A7), but this improvement was only statistically 
significant for GLM-P (p < 0.05; Wilcoxon rank-sum test).

For predictions of the relative order of regions in alien species richness (ρ), no 
method emerges as best performing (p > 0.05; Wilcoxon rank-sum test). The applica-
tion of clamping did not significantly alter the results (p > 0.05; Wilcoxon rank-sum 
test). Most datasets showed moderate to low (ρ < 0.45) degrees of correlation between 
the predicted and observed order of regions (Figure 1D; Suppl. material 1: Table S6).

Discussion

Our results show that values of alien species richness can be predicted with reasonable 
to moderate accuracy within the geographical range of the model calibration data, but 
only poorly in regions outside this range. This drop in predictive power was verified 
across modelling techniques and concerned the capacity to predict both absolute alien 
species richness and relative alien species richness.

The poor transferability of statistical models is not unexpected because the rela-
tionships they identify are not functional (mechanistic) and may thus be limited in 
their realism outside the space of the calibration data. Issues related to transferability 
have been well documented and examined for species distribution models (e.g. Ran-
din et al. 2006, Heikkinen et al. 2012, Wenger and Olden 2012, Bahn and McGill 
2013). Our results extend these findings to models of alien species richness. Given the 
similarity of the two model approaches, we argue that the causes for these congruent 
findings could be largely shared. First, poor transferability can be a consequence of 
overfitted models, which have relationships overly adjusted to the calibration data (e.g. 
also expressing random noise), reducing their generality (Wenger and Olden 2012). 
However, we expect this potential source of error to be of minor importance in our 
models because RF, which are known to be susceptible to overfitting (Heikkinen et al. 
2012, Wenger and Olden 2012, Bahn and McGill 2013), showed consistently better 
transferability than GLMs selected by AICc, a modelling approach that is expected to 
provide models robust to overfitting (Randin et al. 2006; Wenger and Olden 2012).
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Another possibility for the poor transferability of the aliens species richness models 
could be that the relationships (i.e. the covariance structure) between predictor and 
response variables and amongst response variables are not conserved in the areas that 
lie beyond the spatial range of the calibration data (Bahn and McGill 2013). These 
sorts of changes can result from real differences in the way factors influence alien spe-
cies richness in the new areas (e.g. temperature may be an important limiting factor at 
high latitudes, but not near the tropics) or from changes in the correlation structure of 
the predictors (Elith et al. 2010). Importantly, these changes are more likely for pre-
dictors that are proxies of the causal process, because relationships for them should be 
less robust to the effects of confounding factors or to changes in predictor’s correlation 
structures (Austin 2002). In our models, several predictors are actually proxies of the 
putative relevant mechanisms rather than direct measures, making them particularly 
susceptible to this type of problem. We stress however, that this is frequently the case 
in models of alien species richness, as better, proximal information is often not avail-
able. One particular example refers to colonisation pressure, i.e. the number of species 
introduced into a region (Lockwood et al. 2009), which is a strong determinant for the 
number of alien species that become established (Dawson et al. 2017). In the absence 
of better information, colonisation pressure was represented by variables depicting 
variation in levels of human activity (e.g. per capita GDP; human population den-
sity; proportion of urban areas). The assumption is that higher human activity should 
translate into higher colonisation pressure e.g. due to a higher purchase of pets and 
plants or to higher volumes of imported cargo potentially carrying alien species. While 
this relationship should hold some degree of generality (Dawson et al. 2017), it is also 
likely that the shape and relative importance of the relationship changes to some extent 
across space, given the local influence of regional-scale factors such as regulations for 
the importation of living animals and plants (e.g. Reino et al. 2017).

A third possible cause for the observed poor transferability of models concerns 
extrapolation, which is also related to the information content in the model calibra-
tion data. Predictions made for conditions out of the range of the calibration data are 
extremely challenging, no matter the modelling technique used (Elith and Graham 
2009, Elith et al. 2010). We applied ‘clamping’ to GLMs and MARS when confronted 
with extrapolating conditions, mimicking the behaviour of BRT and RF. This substan-
tially improved the overall accuracy of these models, providing circumstantial evidence 
for a substantial prevalence of extrapolation in the predictions. It is worth emphasising 
that, while clamping avoids ‘off the chart’ predictions under extrapolation, it does not 
‘add’ extra information to the models and any extrapolating prediction, clamped or 
not, should generally be less accurate than a prediction made for conditions sampled 
by the data (i.e. interpolation). Our 4-fold regional cross-validation, which holds-out 
one geographical quadrant of the data at a time, should imply a substantial number of 
extrapolating data points, hence also likely contributing to the verified sharp drop in 
predictive accuracy when models are spatially transferred.

A good transferability of models of alien species richness may not be required if 
predictions or model-based inferences are intended for the geographical range of the 
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sampling data. Our results show that, under these settings, models of alien species 
richness can achieve moderate (e.g. RAE ≈ 75% and ρ ≈ 0.6) predictive accuracy. 
However, one of our most prominent results was that predictions from RF and BRT 
were significantly better, despite not being good, than those from GLM-type mod-
els and MARS. This occurred even after data clamping being applied to GLMs and 
MARS, allowing the effect of the higher susceptibility of these models to extrapola-
tion errors to be discarded.

It is not unexpected to find RF and BRT outperforming GLMs in non-transferred 
predictions. The model fitting process of the former techniques consists in iteratively 
fitting the data and testing the ability of the fitted relationships for prediction using 
portions of data left-out from the fitting. The leave-one-out cross-validation mimics 
this procedure, differing mainly in that the error levels measured are not used to retune 
the model. Hence, machine learning techniques are specifically optimised to predict 
well, based on the patterns sampled by the data. Besides, the capacity of machine 
learning techniques to fit complex functions could be particular relevant for models 
of alien species richness, because the relationships between variables in these models 
are often fitted along wide gradients (such as for global-scale environmental and socio-
economic variation; e.g. Dawson et al. 2017), where the persistence of simple linear or 
monotonic relationships (as it is assumed by GLMs) should be less common. MARS, 
another machine learning method, was also substantially outperformed by RF and 
BRT. Although also able to fit non-linear functions, the complexity of MARS models 
is usually considerably lower than that of BRT and RF (Merow et al. 2014) which 
could explain its comparatively lower predictive performance.

Similarly to what was verified in the predictions of transferred models, extrapola-
tion also severely harmed predictions made for in-sample geographical ranges. Ideally, 
extrapolation should be overcome by the use of additional data, sampling the extrapo-
lating predictors’ space. However, when that is not possible, our results show that the 
use of clamping is strongly recommended. Further benefits could also be expected 
from the examination of the conditions leading to extrapolation, such as the identity 
of the predictors involved and of how far the model has to extrapolate in the predic-
tors’ space. This has been assessed in SDMs previously (see, for instance, Elith et al. 
2010) and allows a further refinement of the predictions by, for instance, identifying 
extrapolating regions of ‘low novelty’ and for which prediction could be appropriate or 
inversely, regions where conditions are far beyond what is sampled by the data and for 
which predictions should be avoided.

Overall, our results suggest that accurate predictions of regional alien species rich-
ness from correlative models are beyond the scope of the models we used. This is par-
ticularly the case for absolute values of richness, whereas relative richness, despite not 
achieving overall good accuracy, showed to be more robust to errors. Here we analysed 
the transferability of models on species richness between regions. A complementary 
analysis, recognising species identity explicitly and, hence, also allowing for the analy-
sis of species turnover, are models of compositional similarity (e.g. Hui and McGeoch 
2014, Capinha et al. 2015). A promising way forward would be testing the transfer-
ability of such models.
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Conclusions

We showed that regional alien species richness cannot be predicted with reliability 
using the data and methods typically found in literature. Given that these data and 
methods already reflect best available possibilities to modellers, in the near future the 
coverage of information gaps on alien species richness is likely to remain entirely de-
pendent on the publication and updating of alien species inventories, which reinforces 
recent calls for the publication of this information (Pyšek et al. 2017). A comple-
mentary approach to model species richness and by some, regarded as a potential way 
forward, is to model and perhaps predict, patterns of alien biodiversity using measures 
of compositional differentiation and similarity between regions.

Two of our results are also of relevance for descriptive models of alien species rich-
ness. First, we found that tree ensembles-type modelling techniques (RF and BRT) are 
consistently superior in predicting non-transferred values of richness than GLM and 
MARS. This supports the fact that flexible, non-linear, models are better able to capture 
information from the data than GLM, a more commonly used technique. The common 
justification for the use of GLM-type models for analysing alien species richness concerns 
their ease of interpretation. However, a number of methods have recently been developed 
to improve the interpretability of tree ensembles (e.g. Fokkema 2017), which may be 
worth considering in order to further refine our understanding about the relationships 
between alien species richness and spatial factors. Second, our results also warrant a call 
for caution in making inferences beyond the geographical (and likely also temporal) 
range of the data used to calibrate the models, e.g. for future projections. We recommend 
performing a transferability assessment of the models, as allowed, for instance, by re-
gional cross-validation, in order to confirm the generality of the relationships identified.
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