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Summary

The peculiarities of Antarctic benthic invertebrates are a result of the geological, climatic history and
the long period (about 20 m.y.) of existence of the polar environment. Results of research about the
biology and ecology of benthic invertebrates and especially of the Crustacea Isopoda are briefly
summarized. Combining biogeographical data with results of a phylogenetic analysis show that the
radiation of Antarctic taxa can be correlated with the successive fragmentation of Gondwana. Present day
Serolidae have 3 centres of radiation (Antarctica, South America, Australia), they evolved after the
separation of Africa. The suspension-feeding Arcturinae probably evolved in the same period.

Introduction

James Eights, «the first qualified naturalist to set foot on land south of the Antarctic Con-
vergence» (Hedgpeth 1971), described in 1833 the first Antarctic isopod (Brongniartia trilobi-
toides). Since then several faunistic surveys of restricted areas have been published, but until
now only few taxa have been revised comprehensively (e. g. Newman and Ross 1971: Cirripe-
dia; Cairns 1982: Scleractinia; Gibson 1985: Heteronemertini). It can be gathered from these
studies that the Antarctic marine benthos differs distinctly in composition and biology from
the fauna of other oceans. Comparing the biology, phylogenetic relationships and biogeogra-
phy of benthic invertebrates with climatic history and plate tectonics some aspects of the evo-
lution of Antarctic taxa can be deduced. An important prerequisite is the reconstruction of
phylogenetic relationships, which have been proposed only for few Antarctic groups (e. g.
Nototheniidae (Perciformes): Andersen 1984; Iphimediidae (Amphipoda): Watling and Thur-
ston 1989; Isopoda: Wigele 1989, in press; Brandt 1991).

In the following account some peculiarities of the Antarctic benthos are explained (see also

259



Dayton 1990). The contribution of systematics to the reconstruction of the historical develop-
ment of the Antarctic fauna is described using examples from the isopod taxa Serolidae and
Arcturinae.

Climatic history and the fragmentation of Gondwana

The cooling of the Southern Ocean increased markedly with the formation of the circumpo-
lar current (westwind drift) about 30 to 25m. y. b. p., which isolated Antarctica thermically
after the opening of the Drake Passage and the northward movement of Australia (Kennett
1977; Barker et al 1988). In the following period glaciation of Antarctica increased until the
polar ice-cap was fully developed (about 20m. y. b. p.: Hayes and Frakes 1977; Birkenmajer
1985). The fossil record does not allow a detailed reconstruction of the history of marine ben-
thic invertebrates, but it is evident that several species became extinct after the Eocene/Oligo-
cene temperature reduction, for example, nearly all decapod crustaceans (cf. summary in
Brandt 1991). During the course of oscillation in the maximal extension of the shelf-ice, large
areas of the continental shelf were covered with grounded ice about 5m.y.b. p. and again
about 2.4m.y.b. p. (Kennett 1977; Barker et al 1988). An exctinction of all shelf species as
a result of these events seems to be unlikely because of the high number of extant endemic spe-
cies that are neither descendants of deep-sea ancestors nor immigrants from South Amierica
(see below).

Peculiarities of the Antarctic benthos

Species diversity: In comparison with other oceans the number of species is high in many
taxa. The shelf fauna of the Arctic Ocean is distinctly less rich than that of the South Polar
Ocean (see Knox and Lowry 1977). Each year new species are discovered in Antarctica, an
actual review of species numbers does not exist (recent taxonomic reviews: Cairns 1990: Scle-
ractinia; Zdzitowiecki 1991: Acanthocephala; Wigele 1991: Isopoda Valvifera). The reason
for the high diversity discussed in literature are the age of the southern polar ecosystem, the
regular seasonality (predictability), and the diversity of bottom morphology and sediment
types (e. g. Lipps and Hickman 1982). Furthermore speciation might be favoured by the re-
duced gene exchange between populations, caused by the low mobility of individuals and the
absence of pelagic stages (e. g. Picken 1980; Wigele 1986). The rich adaptive radiation during
the Cenozoic obviously originates from a reduced number of species that survived the cooling
of the Southern Ocean. Watling and Thurston (1989) call Antarctica an «evolutionary incuba-
tor».

Endemisms: Brandt (1991) summarized published data, according to which more than 70%
of the species of the following groups are endemic: Porifera, Actiniaria, Amphipoda, Cuma-
cea, Tanaidacea, Isopoda, Holothuroidea, Echinoidea, Ophiuroidea, Ascidiacea, fishes. The
lowest value (38%) is recorded for polychaetes.

Guilds: In shelf communities of many localities sessile suspension feeders are dominant in
terms of biomass (e. g. Bullivant 1967; Dayton et al 1974; Gutt 1988; Voff 1988). Vof3 (1988)
for example obtained in the western Weddell Sea trawl samples with up to 90% sponges (wet
weight). Among predators such as amphipods a number of unusual specialists were dis-
covered, which feed on suspension feeders (Coleman 1989, 1991; Klages and Gutt 1990).
These prey species are also the diet of several nudibranchs (Wigele 1989, 1990). It is remar-
kable that 5 out of 6 frequent occurring asteroids of the McMurdo Sound feed exclusively on
sponges (e. g. McClintock 1987). This specialization of predators indicates the abundance of
suspension feeders. Another frequent mode of nutrition is necrophagy (Arnaud 1974a; Press-
ler 1986). Detritus originating from sedimentation or horizontal transportation must be an
important energy source in areas permanently covered with ice and in deeper water.

Reduction of planktotrophic stages: Broodcare, the reduction of pelagic stages in connection
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with the production of relatively few and large eggs are common features of Antarctic inverte-
brates (e. g. Arnaud 1974b; Clarke 1982b; Wigele 1987a). Many Antarctic asteroids probably
do have pelagic larvae, but most of these are lecitotrophic (e. g. Bosch and Pearse 1990). While
among malacostracan crustaceans nearly all decapod taxa are absent, the breeding peracarids
are found with high abundances and species numbers (e. g. Jazdzewski et al 1991). These phe-
nomena are usually considered to be adaptations to the short plankton blooms at low,
growth-delaying temperatures (e. g. Picken 1980).

Cold adaptations: While fishes are able to produce glycoproteins as anti-freeze substances
(e. g. Eastman and DeVries 1987), the hitherto studied invertebrates tolerate few degrees be-
low the freezing point of sea water by hyperosmotic regulation (e. g. Rakusa-Suszczewski and
McWhinnie 1976). Respiration measurements indicate the absence of a metabolic cold adapta-
tion in most species (e. g. Ralph and Maxwell 1977a, b; Rakusa-Suszczewski and Lach 1991).
The low metabolic rate is in accordance with observations of slow growth and low reproduc-
tive rates (Clarke 1980), though low temperatures must not per se induce a retardation of all
biological processes. Species with relatively fast growth, which probably compensate the ef-
fect of low temperatures to some degree are e. g. the isopod Glyptonotus antarcticus (see Bel-
man 1975) and the bivalves Laternula elliptica and Adamussium colbecki (Ralph and Maxwell
1977a).

K-selection: Many species have the typical features of K-selected organisms: longevity, large
body size and low reproductive rates. Slowness as a physiological effect of low temperatures
can not easily be discerned experimentally from evolutionary adaptations to a stable, predict-
able ecosystem. Slow growth and longevity have frequently been observed (e. g. Pearse 1969;
Richardson 1979; Ekau 1988; Wigele 1990; Arntz and Gorny 1991). Several sponge species
of the McMurdo Sound did not visibly grow during the course of 10 years (Dayton 1979).
Embryonic development has shown to be unusually slow in many species and contributes to
the retardation of life cycles (e. g. Pearse 1969; Wigele 1987, 1988, 1990). It is therefore not
surprising that the commercial exploitation of Antarctic fish species in the Atlantic Sector of
the Southern Ocean led within a short time to a considerable reduction of the standing stock
(e. g. Kock and Koster 1989).

With the exception of invertebrates that produce calcareous skeletons most taxa contain
species that grow to a large size. DeBroyer (1977) calculated that 12% of the Antarctic amphi-
pod species are «giants> and more than 30% are larger than the generic median size.

Modes of life of Antarctic Isopoda

A summary of modes of life has been published by Wigele (1991). Antarctic Asellota repre-
sent about 60% of all hitherto discovered isopod species of the region, but their mode of life
is generally not well studied. Many species are probably omnivorous and able to exist by con-
suming detritus. With the exception of many Munnopsidae (see Fig. 3A), which are able to
swim with their paddle-shaped pereopods 5-7, most asellotes are benthic crawling or burrow-
ing organisms (e. g. Hult 1941; Hessler and Strémberg 1989). The taxonomy of the Valvifera
has recently been revised (Wigele 1991). Glyptonotus antarcticus (Chaetiliidae) is a stenother-
mal gigantic> species (length > 12 cm), which does not survive temperatures above 6 oC (Whi-
te 1975). Specimens can be found circumpolarly on all types of substrates from 0 to about
800 m depth. The Idoteidae are rare and avoid the colder areas. In contrast the Arcturidae are
one of the characteristic groups of the Antarctic benthic fauna. Most of these isopods have a
highly specialized morphology (Fig. 4D): pereopods 2 to 4 bear long setae forming a sieving
basket. This can be held into the water due to special joints between pereonites 5 to 7 that al-
low a dorsal bending of the thorax. Animals with this morphology (Arcturinae) are passive
filterfeeders that probably depend mainly on phytoplankton and microzooplankton of large
size (particles > 50-80 um) (Wigele 1987c). Of the Sphaeromatidea (see Wigele 1989) only
the Serolidae are common in Antarctica. These are flattened, discoid animals (see Fig. 3A)
with several morphological analogies to trilobites. Many species live on soft bottoms. Serolids
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Fig. 1: Life-cycle of the Antarctic fish parasite Gnathia calva (after Wagele 1988).

are predators and carrion-feeders. In captivity they prefer polychaetes. Paraserolis polita
(Pfeffer) is a common species of near-shore soft bottoms in the South Shetlands area, with
abundances of 100 to more than 300ind/m? in dense populations (e. g. Wigele and Brito
1990). The largest species of the worm-like Anthuridea is the Antarctic Accalathura gigantissi-
ma Kussakin (up to 4-5cm). Specimens suck-out body fluids of amphipods with their acute
mouthparts (Wigele 1985). Eisothistos antarcticus (Hyssuridae) probably occupies a similar
niche as the mediterranean species of the genus (see Wigele 1979), which live within serpulid
tubes and feed on the original inhabitants. Species of the Cymothoida are predators or carrion-
feeders specialized on fishes (Cirolanidae), ectoparasites of fishes (Aegidae, Cymothoidae) or
of crustaceans (Bopyridae). Specimens of Aega antarctica kept for 2 years in aquaria grew very
slowly. According to these data females reach maturity at an age of more than 10 years, the
number of eggs is verly low (between 9 and 53), embryonic development takes more than 30
months (Wigele 1990). The Gnathiidae also are ectoparasites of fishes, but only in the imma-
ture stage, the adults have reduced and modified mouthparts. Wigele (1988) described the life-
cycle of Gnathia calva Vanhoffen (Fig. 1), a species with harems of up to 43 females or juve-
niles per male that inhabit small hexactinellid sponges. A special rectal vesicle contains symbi-
otic bacteria (Juilfs and Wigele 1987). Embryogenesis takes about 12 months, sexual maturity
is reached about 3—4 years after hatching.
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Conspicuous characteristics of the Antarctic isopod fauna

Gigantism (Fig. 2A): The largest species of the Paranthuridae, Chaetiliidae, Arcturidae, Se-
rolidae and Gnathiidae live in Antarctica. The average maximal length of Antarctic taxa is
clearly greater than in related taxa occurring north of the convergence (Fig. 2A). Gigantism
is somehow correlated with low temperatures: southern populations of Ceratoserolis trilobito-
ides have fewer and larger eggs than populations from slightly warmer areas (Wigele 1987a)
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Fig. 2A: Average maximal length of isopod taxa from Antarctica in comparison with other regions. Note

that species from colder oceans (Antarctica, North Pacific, Arctic) are larger than other species. B: Egg
size of Antarctic isopods in comparison with other species.
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(see Thorson’s rule: Thorson 1936, 1950). Largest isopod eggs occur in Antarctic species
(Fig. 2B).

Low reproductive rates and long life cycles: While isopods of the North Sea usually live for
1 year, summer generations only for few months, the life cycles of Antarctic species take much
longer to reach maturity. Glyptonotus antarcticus probably can not achieve maturity in less
than 5 years, females of Paraserolis polita need 28 months, while the larger Ceratoserolis trilo-
bitoides needs 3.5 to 4 years, Gnathia calva 3 to 4 years, Aega antarctica more than 10 years
(references in Wigele 1987a, 1990). Embryogenesis contributes to the retardation of life cy-
cles. While European species usually hatch after only 25 to 45 days, in Antarctica embryonic
development takes 1 to nearly 3 years (Wigele 19872, b, 1990) (see Table 1). Lowest reproduc-
tive values occur in Antarctic and interestingly also in stygobiontic species. This indicates that
not only cold climate but also stable, unproductive environments can trigger the evolution of
slow development. The parasite Gnrathia calva produces more (but very small) eggs in compa-
rison with serolids, but Aega antarctica, the other fish parasite, has the lowest value recorded
for Antarctic isopods. Glyptonotus antarcticus, a relatively fast growing species (precise data
are still wanting), reaches a large size and produces a large number of eggs (White 1970; the
value in Table 1 assumes a generation time of 5 years plus 20 months embryogenesis). With
this exception populations of Antarctic isopods must have a much lower regenerative potential
than populations of European species.

Cold adaptations: Metabolic adaptations seem to be absent in most hitherto studied species.
Respiration measurements (White 1975; Luxmoore 1984) have shown that Antarctic isopods
have a metabolic rate no higher than in European species at winter temperatures.

Vertical distribution: The absence of a pronounced stratification in the water column en-
ables species that are independent of plankton concentration to be eurybathic. These conditi-
ons also favour the evolutionary exchange between deepsea and shelf (Fig. 3A). Cases of polar
emergence and polar submergence are summarized in Brandt (1991).

Table 1: Average number of eggs produced per day of minimum generation time by 1000 females (fat Ant-
arctic species, ztalics stygobionts) (for references see Wigele 1987, 1988, 1990).

species eggs, day
Asellus hilgendorffi (25°C) 780
Idotea baltica (Sommer) 666
Idotea baltica 580
Idotea baltica (Winter) 403
Idotea chelipes (Sommer) 400
Asellus hilgendorffi (15°C) 310
Asellus aquaticus 290-300
Idotea chelipes (Winter) 282
Idotea chelipes (Sommer) 259
Glyptonotus antarcticus 210
Idotea chelipes (Winter) 177
Sphaeroma hookeri 160
Asellus aquaticus 150-160
Saduria entomon 132
Dynamene bidentata 120-130
Asellus aquaticus 82
Idotea pelagica 80
Excirolana braziliensis (Sommer) 79
Gnathia calva 71
Eurydice pulchra (Winter) 61
Limnoria lignorum 55
Cyathura carinata 55
Excirolana braziliensis (Winter) 52
Gnorimosphaeroma insulare 44
Proasellus cavaticus 21-30
Serolis polita 28
Ceratoserolis trilobitoides 1
Acga antarctia 9
Stenasellus viret 7
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Fig. 3A: Examples for polar submergence and emergence. B: Dendrogram for gener of the Serolidae

showing that radiation is correlated with vicariance by continental drift. Squares stand for autapomor-
phies listed in Wigele (in press).
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Biogeography and history of the Antarctic isopod fauna

Marine groups with predominantly warm-water species as the Sphaeromatidae are poorly
represented. In addition also the boreal phytophagous Idoteidae did not radiate in Antarctica,
despite of the local occurrence of a dense macroalgal vegetation. The species-rich Antarctic
Asellota are not well studied, their phylogenetic biogeography cannot be reconstructed in de-
tail at present. The low species number of Antarctic fish parasites (taxa of the Cymothoida)
is not surprising in view of the composition of the fish fauna: 88% of the fish species are ende-
mic, more than half are Notothenioidei, a group that radiated in the Southern Ocean (Andri-
ashev 1987). Probably many parasite species do not find an adequate host in Antarctica. Simi-
larly the absence of most decapod taxa is an important cause for the rare occurrence of bopy-
rids.

An important adaptive radiation in the polar region can be postulated for the Serolidae and
Arcturinae. Evolution could be reconstructed in some detail especially for the Serolidae (Wi-
gele 1989, in press; Brandt 1991). Related less derived outgroups (Plakarthriidae, Bathynatali-

Fig. 4: A-E: Steps in the evolution of arcturids: Elongation of antenna 2 (A 2) and narrowing of body
(from A to B), pereopods specialized for suspension-feeding (C), dorsal bending of thorax (D), elongati-
on of pereonite 4 (E). A: Holidoteinae; B: Pseudidotheinae; C: Arcturinae (Plenroprion); D: Arcturinae
(Antarcturus); E: Arcturinae (Arcturella).
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Fig. 5A: Palacogeography during Upper Cretaceous (90-80 my) with the presumed distribution of sero-
lids (from Wigele, in press).B: A, B, C: radiation centers of serolids; R: Gondwana — relict region, distri-
bution of Plakarthriidae and Bathynataliidae. Open arrows: presumed distribution — routes of deep-sea

genera. Black arrows do not indicate a path but the enigmatic disjunct distribution of Heteroserolis (from
Wigele, in press).
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idae) contain only few species with a relict distribution in the south of South America, Africa,
and in the Australian region. Within the Serolidae 4 monophyla can be discerned, which radi-
ated mainly in South America, Australia, or in Antarctica (Fig. 5B), while shelf species are ab-
sent in South Africa (Fig. 3B, 5B). It seems that crown group Serolidae evolved after the sepa-
ration of Africa (90m. y.b. p., see Fig. 5A). Vicariance by continental drift and local dispersal
seems to be the best explanation for present-day biogeography of serolids. The phylogenetic
analysis shows that part of the deep-sea serolids are not derived from Antarctic ancestors, but
belong to a South American monophylum (Wigele in press). The monophyly of the group
with predominantly Antarctic species indicates that special adaptations are required to succes-
sfully inhabit the polar environment.

The historical development of the Arcturidae is basicly similar to that of the Serolidae: the
less derived, phylogenetic older taxa (Holidoteinae, Xenarcturinae, Pseudidotheinae; Fig. 4)
occur in the south of Africa, South America, New Zealand, and in the Subantarctic region
(Fig. 4). The phylogeny of the Arcturinae is still unknown in detail. Most species of the north-
ern hemisphere are more specialized than the Antarctic ones: their pereonite 4 is usually
elongated and the filter-basket is shortened (Wigele 1989, see Fig. 4E). These data suggest that
suspension-feeding of arcturids evolved in the Southern Ocean (Wigele 1989).

Conditions that favour speciation in the South Polar Ocean can be studied in the case of Ce-
ratoserolis trilobitoides, an eurybathic serolid with circumpolar distribution. Local popula-
tions from different localities vary in morphology and colouration (Wigele 1986). Specimens
of neighbouring populations can be discerned by their morphology, while the variability wi-
thin a population is small. As already mentioned populations also differ in egg numbers and
size (southern populations having larger eggs). Despite oceanic currents and the relative uni-
formity of water temperature, populations are obviously isolated from each other, gene ex-
change is reduced. Low reproductive rates, the absence of pelagic dispersal stages, low mobili-
ty of adults favour this isolation. Bottom morphology and currents can function as barriers,
as in the Filchner depression.
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